
Towards formal validation of

aerospace systems

Eric Feron
Dutton/Ducoffe Professor of Aerospace Engineering, Georgia Institute of

Technology

feron@gatech.edu

Take-Home Message

It changes every time I give this talk

“Safety-critical embedded software design best tackled through proper specification, followed by
automatic coding of specs AND their semantics

This is the best mechanism to leverage domain-specific knowledge

Examples: Control, collision avoidance systems”Examples: Control, collision avoidance systems”

Or

“In the system certification business, we’d better speak everybody’s language”

Or

“I’ve got a control system autocoder that includes specs and semantics as part of the job”

Or

I finally found a viable outlet for my control analysis techniques

Or

“You know there is something interesting about the philosophy of that DARPA META program”

Outline
• Motivation/background
• Decision and Control Laboratory
• A simple control example
• Stability and performance analyses: Why go

beyond specs and into implementation?
• What proofs for what system representations?• What proofs for what system representations?
• Journal proofs, block diagram proofs, program

proofs
• Closed-loop system properties
• Tool implementation

Safety-critical software

• Software that interacts in real time with
physical system (usually big-heavy and/or
very costly and/or super-dangerous) and
possibly humans.possibly humans.

• Aircraft

• Rockets

• Missiles

• Radiotherapy machines

Some examples of
why we should care

Facts
• How many lines of code produced by

average software engineer for spacecraft
applications

0.6 Lines Of Code Per Hour

• F22 Raptor: 1.7M LOC• F22 Raptor: 1.7M LOC

• F35 JSF: 5.7M LOC

• Boeing 787: 6.5M LOC

• 6.5M * $150 / 0.6 ~ $1.7B

Within “Systems”
(According to Walter Gillette
777 program manager)

Total pie chart

Accidents/Incidents

• “Some of the most widely cited software-related
accidents in safety-critical systems involved a
computerized radiation therapy machine called
the Therac-25.”

• “The new US stealth fighter, the F-22 Raptor, • “The new US stealth fighter, the F-22 Raptor,
was deployed for the first time to Asia earlier this
month. On Feb. 11, twelve Raptors flying from
Hawaii to Japan were forced to turn back when a
software glitch crashed all of the F-22s' on-board
computers as they crossed the international date
line.”

Accidents/Incidents Ariane 5

• “The Ariane 5 software reused the
specifications from the Ariane 4, but the
Ariane 5's flight path was considerably
different and beyond the range for which
the reused computer program had been the reused computer program had been
designed. Specifically, the Ariane 5's
greater acceleration caused the back-up
and primary inertial guidance computers to
crash, after which the launcher's nozzles
were directed by spurious data.”

Patriot disaster

• (1) the Patriot battery at Dhahran failed to track
and intercept a Scud missile due to a software
problem in the system's weapons control
computer; (2) the software problem caused an
inaccurate tracking calculation which became
worse the longer the system operated; (3) at the worse the longer the system operated; (3) at the
time of the incident, the battery had operated
continuously for over 100 hours and the
inaccuracy was serious enough to cause the
system to look in the wrong place for the
incoming Scud;

(The scud killed 21 friendly soldiers)

Remedies: Analyses
• Simulation super-useful: SIL, HIL.
• Enormous efforts devoted to static program analysis

– Model Checking (Sifakis/Clarke/Holzmann)
– Abstract Interpretation (Cousot, Cousot)
– WCET analysis
– PVS (Sankar, Owre, Rushby)

• Very strong appetite for code as input to analyzers…
• 100’s of current applications
• Airbus A340/380, Ariane 5 (a posteriori)• Airbus A340/380, Ariane 5 (a posteriori)
• RTCA DO178C/DO333/DO331/DO278A supplement

acknowledge power of formal methods

• Scarcity of available test cases: Toulouse-based Paparazzi
autopilot on NASA’s list of static analysis milestones in NASA’s
VVFCS program (Arnaud Venet / CMU West)

Remedies: Design

• Most errors arise during specification of
software, not coding.

• Allow the engineer to specify, then auto-
code.

• SCADE/Esterel Technologies, • SCADE/Esterel Technologies,
Picture2code/Pratt & Whitney, Realtime
Workshop/Mathworks, Gene-
auto/ENSEEIHT, Gryphon/Rockwell-
Collins.

How do we reconcile analysis and design?

A simple control example

d
dt

[
x
ẋ

]

=

[
0 1
−1 0

][
x
ẋ

]
+

[
0
1

]
u, x(0) = x

0
, ẋ(0) = ẋ

0

y = [1 0]

[
x
ẋ

]
.

A simple control example
ỹ(t) = SAT(y(t)),

u(s) = 128
s+ 1

s+ 0.1

s/5 + 1

s/50 + 1
ỹ(s),

Step response

Discrete time
Implementation
100Hz

Controller implementation

1280

564.48

-
+

y

1280

564.48

-
+

y
u

x
c,k+1 =

[
0.499 −0.050
0.010 1.000

]
x
c,k

+

[
1
0

]
SAT(y

k
)

u
k = − [564.48 0]x

c,k
+ 1280 SAT(y

k
)

+- ++

0.4990

0.0500

SAT 1

Z
1

Z0.0100 ++
+-

y

yd

+-+-+- ++++++

0.4990

0.0500

SAT 1

Z
1

Z
1

Z
1

Z0.0100 ++++++
+-+-+-

y

yd

Control system design as seen by control
engineers

System
Identification/
Validation

Controller
design

Control system
analysis

Manual coding

System
data

System
model

Controller

V
a
lid

a
te

d
C

o
n
tro

lle
r

Invalidated
Controller

Not good to
go

Matlab/
Simulink/
Real-time
Workshop

MatrixX

Picture 2 code
(UTC)

Manual coding

Compiler
Source
code

Executable
Verification
and
Validation

Good
to go

Code-level analyses of control software
• Most significant contribution is from Patrick Cousot’s research group at

Ecole Normale Superieure, Paris.
• Abstract interpretation aims at capturing semantics of programs
• Most important application is ASTREE analyzer for Airbus A380 control

code.
• From Feret, “Static Analysis of Digital Filters”, 2004 (also with ASTREE).

A Paradigm Shift Enabled by Good
Specification Analyses

(auto) Code analyzer

Controller
Specifications
(+proof)

Autocoder
(auto)-code Code

analyzer

(third party)

(user)

(certification
Authority)

Proof
Go/no Go

Credible autocoder (a la Rinard)

Controller
Specifications
+proof

Credible
autocoder

Documented
(auto)-code

Proof
checker

Go/no-go

(third party)

(user)

(certification
Authority)

Desirable attributes of “system
proofs”

• Must be expressive enough to tell nontrivial
statements about system

• Must speak the language of system
representation, eg: “IEEE Transactions on
Automatic Control proofs” written in natural Automatic Control proofs” written in natural
language (one wonders…), “Simulink proofs”
expressed in Simulink, “Program proofs”
expressed in formal languages.

• Must be “elementary enough” to be easily
checked wherever necessary.

Back to the Example

The control-systemic way:

Assume the controller state is initialized at x
c,0 = 0

What range of values could be reached by the state x
c,k

and the control
variable u ?

x
c,k+1 =

[
0.499 −0.050
0.010 1.000

]
x
c,k

+

[
1
0

]
SAT(y

k
)

u
k = − [564.48 0]x

c,k
+ 1280 SAT(y

k
)

c,k
variable u

k
?

There is a variety of options, including computation of -1 norms.

A Lyapunov-like proof (from Boyd et al., Poola):

The ellipsoid

is invariant. None of the entries of x exceeds 7 in size.

P =10−3

[
0.6742 0.0428
0.0428 2.4651

]
.

E
P =

{
x ∈ R2 | xTPx ≤ 1

}
.

Lyapunov functions and invariant
ellipses

5 4 32

φdot

φ

A proof for control people

Indeed a linear combination of (*) and xTPx ≤ 1 and w2 ≤ 1 yields the

∀t, xTPx ≤ 1 is equivalent to xT
k
Px

k

≤ 1⇒ xT
k+1
Px

k+1

≤ 1

Or (Ax+Bw)TP (Ax+Bw) ≤ 1 whenever xTPx ≤ 1 and w2 ≤ 1

True if there exists µ such that (Ax+Bw))TP (Ax+Bw)−µxTPx−(1−µ)w2 <
0, (*) a tautology.

≤ ≤

desired property.

P that works is P =10−3

[
0.6742 0.0428
0.0428 2.4651

]
, with µ = 0.9991 and tautology

(*) is 10−3

[
x
w

]
T

−0.5044362 −0.0135878 0.3374606
−0.0135878 −0.0003759 0.00909
0.3374606 0.00909 −0.2258

[
x
w

]
≤ 0.

1280 -1280 -

x(t)10−3
[
0.6742 0.0428
0.0428 2.4651

]
10−3

[
0.6742 0.0428
0.0428 2.4651

]

Quadratic
form

<1

10−3

−0.5044362 −0.0135878 0.3374606
−0.0135878 −0.0003759 0.00909
0.3374606 0.00909 −0.2258

10−3

−0.5044362 −0.0135878 0.3374606
−0.0135878 −0.0003759 0.00909
0.3374606 0.00909 −0.2258

10−3

−0.5044362 −0.0135878 0.3374606
−0.0135878 −0.0003759 0.00909
0.3374606 0.00909 −0.2258

Quadratic
form

<0

Simulink, Discrete Time Formal Semantics

+- ++

0.4990

0.0500

1280

564.48

-
+

SAT 1

Z
1

Z0.0100 ++
+-

y

yd

+-+-+- ++++++

0.4990

0.0500

1280

564.48

-
+

SAT 1

Z
1

Z
1

Z
1

Z0.0100 ++++++
+-+-+-

y

yd

x2

<1

x
2
(0) = 0

x
1
(0) = 0

{true}
1: A = [0.4990, -0.0500; 0.0100, 1.0000];

{true}
2: C = [-564.48, 0];

{true}
3: B = [1;0];D=1280

{true}
4: x = zeros(2,1);

{x ∈ EP }
5: while 1

{x ∈ EP }
6: y = fscanf(stdin,"%f")

{x ∈ EP }

{true}
1: A = [0.4990, -0.0500; 0.0100, 1.0000];

{true}
2: C = [-564.48, 0];

{true}
3: B = [1;0];D=1280

{true}
4: x = zeros(2,1);

{x ∈ EP }
5: while 1

{x ∈ EP }
6: y = fscanf(stdin,"%f")

{x ∈ EP }

Commented code

{ ∈ E }
7: y = max(min(y,1),-1);{
x ∈ EP , y

2 ≤ 1
}

8: u = C*x+D*y;

{x ∈ EP , u
2 ≤ 2(CP−1CT +D2), y2 ≤ 1}

9: fprintf(stdout,"%f\n",u)
{x ∈ EP , y

2 ≤ 1, (Ax+By)TP (Ax+By)− 0.01xTPx− 0.99y2 ≤ 0}
skip{
Ax+By ∈ EP , y

2 ≤ 1
}

10: x = A*x + B*y;

{x ∈ EP }
11: end

{ ∈ E }
7: y = max(min(y,1),-1);{
x ∈ EP , y

2 ≤ 1
}

8: u = C*x+D*y;

{x ∈ EP , u
2 ≤ 2(CP−1CT +D2), y2 ≤ 1}

9: fprintf(stdout,"%f\n",u)
{x ∈ EP , y

2 ≤ 1, (Ax+By)TP (Ax+By)− 0.01xTPx− 0.99y2 ≤ 0}
skip{
Ax+By ∈ EP , y

2 ≤ 1
}

10: x = A*x + B*y;

{x ∈ EP }
11: end

Adding the controlled plant as part of the
controller’s semantics

+-

-0.010

1

Z
1

Z0.010
u y

++
++0.010

.00005

+
+-+-

-0.010-0.010

1

Z
1

Z
1

Z
1

Z0.010
u y

++++
++++0.0100.010

.00005

+

Quadratic
form

<1

+- ++

0.4990

0.0500

1280

564.48

-
+

SAT 1

Z
1

Z0.0100 ++
+-

y

yd

+-+-+- ++++++

0.4990

0.0500

1280

564.48

-
+

SAT 1

Z
1

Z
1

Z
1

Z0.0100 ++++++
+-+-+-

y

yd

x2 <0.5

P

(xc, xp)

Front End: Formal comment writing

• ANSI/ISO C Specification Language (ACSL) can

Controller
Specifications
+proof

Credible
autocoder

Documented
(auto)-code

Proof
checker

Go/no-go

(third party)

(user)

(certification
Authority)

• ANSI/ISO C Specification Language (ACSL) can
be used to formally comment C programs and
can be handled by Frama-C.

• Start from Simulink

• End with commented C code

ANNOTATION LANGUAGE
• On the Simulink Side

– Must be able to write system semantics and
proofs supporting semantics.

• On the C side

– Same requirements of expressivity, but
annotations must be readable by certification
software.

– We express everything in ACSL.

A prototype front-end built on Gene-Auto
Thank you Marc Pantel, Arnaud Dieumegard, Andres Toom

Back End: Verification of Code Semantics

Controller
Specifications

Credible
autocoder

Documented
(auto)-code

Proof
checker

Go/no-go

+proof
(auto)-code checker

(third party)

(user)

(certification
Authority)

FRAMA-C

• Developed by CEA-LIST and INRIA

• Hoare Style annotation language.

• Can interface with manual and automated
proving software (e.g., PVS).

• Has the required expressivity.

INTERFACING WITH VERIFICATION
TOOLS

• We use Frama-C because it can generate
verification conditions for various pieces of
software

• The interface with PVS allows us to use • The interface with PVS allows us to use
the work done at the National Institute of
Aerospace (Heber Herencia) and SRI
(Sam Owre) on verification of linear
algebraic systems. (NFM 2012)

A physical example: 3 DOF
helicopter

And it still works!!!

F-18 replica from Rockwell-Collins

http://www.youtube.com/watch?v=QJkIONTzbNM

Engine closed-loop dynamics

• Past couple of years spent on engine
controller design (control of n1, n2).

• STTR Collaboration with Aurora Flight
Sciences.Sciences.

• Gain-scheduled controller design +
Quadratic Lyapunov function as certificate
enables initial documentation of control
code.

Application to Collision avoidance
TCAS / last resort safety net

Vehicle guidance and collision
avoidance

• Current TCAS designed as computer
pseudo-code and specifications

Very hard to formally prove
anything about TCAS.

Where are the invariants?
Good luck with that. A nice
challenge for static analyzers.

ACAS-X: A new development

• An airborne, embedded collision
avoidance system like TCAS. Same
functionality.

• Developed by Lincoln Laboratory, • Developed by Lincoln Laboratory,
Lexington, Massachusetts, and MIT.

• Reportedly improvement over TCAS.

• Development encouraged by Federal
Aviation Administration, and discussed by
FAA/EASA/DGAC-DTI groups.

New Development: ACAS-X

• Designed according to sound theoretical,
model-based principle of Dynamic
Programming:

J∗(x) = minu (c(x) + J
∗(x+))

x+ f (x, u)x+ = f (x, u)

Think of J as total probability of collision during

encounter, c(x) as probability of collision at state x

during small instant. Need other terms to prevent

aircraft from making, e.g. Split S maneuver.

ACAS-X certification
From Kochenderfer, 2010

“In particular, since this is a new approach to TCAS logic development,
the certifiability of the resulting logic is of particular concern. If this new
approach is to be used simply as an aid to engineers who are
developing or revising collision avoidance pseudocode, then there
would be little impact on the certification process. However, if the logic
produced by dynamic programming or some other automated process
is to be used directly in a future version of TCAS, then the certification is to be used directly in a future version of TCAS, then the certification
process may be somewhat different. The core of the certification
process will be the same, involving rigorous simulation studies and
flight tests to prove safety and demonstrate operational acceptability.
However, the vetting of the logic itself will involve more than just
studying the logic that will be deployed on the system. Depending on
the representation of the logic, it may not be directly comprehensible by
an engineer. Therefore, confidence would need to be established in the
safety community that the methods used to generate the logic are
sound.”

Solution in part via close
designer/software analysis

cooperation

• Under “optimal” decision policy, , the
optimal cost, decays along trajectories.

J∗

J∗

• ie acts a bit like a…. Lyapunov function.

• So plenty of opportunities to extract essential
ACAS-X software properties at design phase.

J∗

Lyapunov functions yield software
invariants…

5 4 32

φdot

φ

… So does dynamic programming
v

x

Time-Optimal Control:
Double integrator

x =
sign(v)v2

2

(graphics are more than approximate)

T ∗ = −v + 2

√
v2

2
− x

=
2

Minimum time
path planning
with obstacles:
Discontinuous
value
functions?functions?

So do optimal cost functions…
(Note: This is NOT ACAS-X)

4
5

6

4 3 2 1
0

-4 -6

Same challenges as for inner-loop
control functions

•Lincoln Lab’s ACAS-X is designed via discretized state-space.
•Specification-level models used to design system are not
identical to reality

Optimization algorithmsf(x)

%x1,x2 given

while true

(x,y)=int(subdiff(x1,x2))

if f’(x)> 0 then x2=x;

else x1=x

end

Invariant properties to
insert in code:

xx1 x2x3
x4

x5

y3

y4

y5

Decay of f(x)’s
Increase of y’s
f(x)>y

The whole aircraft system

• The controls

• Fault detection isolation

• The human & displays

• The vehicle itself• The vehicle itself

Conclusion

• It is possible to generate safety-critical
control code from specifications, all-
equipped with semantics and proofs.

• Code-level analyses are possible, and
much easier than analyses from code
alone.

Acknowledgements
• Army Research Office
• Dutton/Ducoffe professorship at Georgia Tech
• Fondation STAE Toulouse
• Ecole Nationale de l’Aviation Civile
• Institut National Polytechnique de Toulouse
• National Science Foundation• National Science Foundation
• NASA
• ONERA DCSD and DTIM
• Fernando Alegre, Arnaud Dieumegard, Alwyn Goodloe, Heber

Herencia, Pierre-Loic Garoche, Romain Jobredeaux, Sam
Owre, Marc Pantel, Pierre Roux, Andres Toom, Arnaud Venet,
Tim Wang.

• + soon: ANR, Didier Henrion, Jean-Bernard Lasserre

