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Take-Home Message

It changes every time I give this talk

“Safety-critical embedded software design best tackled through proper specification, followed by 
automatic coding of specs AND their semantics

This is the best mechanism to leverage domain-specific knowledge

Examples: Control, collision avoidance systems”Examples: Control, collision avoidance systems”

Or

“In the system certification business, we’d better speak everybody’s language”

Or

“I’ve got a control system autocoder that includes specs and semantics as part of the job”

Or

I finally found a viable outlet for my control analysis techniques

Or

“You know there is something interesting about the philosophy of that DARPA META program”



Outline
• Motivation/background
• Decision and Control Laboratory
• A simple control example
• Stability and performance analyses: Why go 

beyond specs and into implementation?
• What proofs for what system representations?• What proofs for what system representations?
• Journal proofs, block diagram proofs, program 

proofs
• Closed-loop system properties
• Tool implementation



Safety-critical software

• Software that interacts in real time with 
physical system (usually big-heavy and/or 
very costly and/or super-dangerous) and 
possibly humans.possibly humans.

• Aircraft 

• Rockets

• Missiles

• Radiotherapy machines



Some examples of 
why we should care



Facts
• How many lines of code produced by 

average software engineer for spacecraft 
applications

0.6 Lines Of Code Per Hour 

• F22 Raptor: 1.7M LOC• F22 Raptor: 1.7M LOC

• F35 JSF: 5.7M LOC

• Boeing 787: 6.5M LOC

• 6.5M * $150 / 0.6 ~ $1.7B



Within “Systems”
(According to Walter Gillette
777 program manager)

Total pie chart



Accidents/Incidents

• “Some of the most widely cited software-related 
accidents in safety-critical systems involved a 
computerized radiation therapy machine called 
the Therac-25.” 

• “The new US stealth fighter, the F-22 Raptor, • “The new US stealth fighter, the F-22 Raptor, 
was deployed for the first time to Asia earlier this 
month. On Feb. 11, twelve Raptors flying from 
Hawaii to Japan were forced to turn back when a 
software glitch crashed all of the F-22s' on-board 
computers as they crossed the international date 
line.” 



Accidents/Incidents Ariane 5

• “The Ariane 5 software reused the 
specifications from the Ariane 4, but the 
Ariane 5's flight path was considerably 
different and beyond the range for which 
the reused computer program had been the reused computer program had been 
designed. Specifically, the Ariane 5's 
greater acceleration caused the back-up 
and primary inertial guidance computers to 
crash, after which the launcher's nozzles 
were directed by spurious data.” 



Patriot disaster

• (1) the Patriot battery at Dhahran failed to track 
and intercept a Scud missile due to a software 
problem in the system's weapons control 
computer; (2) the software problem caused an 
inaccurate tracking calculation which became 
worse the longer the system operated; (3) at the worse the longer the system operated; (3) at the 
time of the incident, the battery had operated 
continuously for over 100 hours and the 
inaccuracy was serious enough to cause the 
system to look in the wrong place for the 
incoming Scud; 

(The scud killed 21 friendly soldiers)



Remedies: Analyses 
• Simulation super-useful: SIL, HIL.
• Enormous efforts devoted to static program analysis

– Model Checking (Sifakis/Clarke/Holzmann)
– Abstract Interpretation (Cousot, Cousot)
– WCET analysis
– PVS (Sankar, Owre, Rushby)

• Very strong appetite for code as input to analyzers…
• 100’s of current applications
• Airbus A340/380, Ariane 5 (a posteriori)• Airbus A340/380, Ariane 5 (a posteriori)
• RTCA DO178C/DO333/DO331/DO278A supplement 

acknowledge power of formal methods

• Scarcity of available test cases: Toulouse-based Paparazzi 
autopilot on NASA’s list of static analysis milestones in NASA’s 
VVFCS program (Arnaud Venet / CMU West)



Remedies: Design

• Most errors arise during specification of 
software, not coding.

• Allow the engineer to specify, then auto-
code.

• SCADE/Esterel Technologies, • SCADE/Esterel Technologies, 
Picture2code/Pratt & Whitney, Realtime 
Workshop/Mathworks, Gene-
auto/ENSEEIHT, Gryphon/Rockwell-
Collins.



How do we reconcile analysis and design?



A simple control example
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.



A simple control example
ỹ(t) = SAT(y(t)),

u(s) = 128
s+ 1

s+ 0.1

s/5 + 1

s/50 + 1
ỹ(s),

Step response
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Control system design as seen by control 
engineers
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Code-level analyses of control software
• Most significant contribution is from Patrick Cousot’s research group at 

Ecole Normale Superieure, Paris. 
• Abstract interpretation aims at capturing semantics of programs
• Most important application is ASTREE analyzer for Airbus A380 control 

code.
• From Feret, “Static Analysis of Digital Filters”, 2004 (also with ASTREE).



A Paradigm Shift Enabled by Good 
Specification Analyses

(auto) Code analyzer

Controller 
Specifications
(+proof)

Autocoder
(auto)-code Code 

analyzer

(third party)

(user)

(certification
Authority)

Proof
Go/no Go

Credible autocoder (a la Rinard)

Controller 
Specifications
+proof

Credible 
autocoder

Documented
(auto)-code

Proof 
checker

Go/no-go

(third party)

(user)

(certification
Authority)



Desirable attributes of “system 
proofs”

• Must be expressive enough to tell nontrivial 
statements about system

• Must speak the language of system 
representation, eg: “IEEE Transactions on 
Automatic Control proofs” written in natural Automatic Control proofs” written in natural 
language (one wonders…), “Simulink proofs” 
expressed in Simulink, “Program proofs” 
expressed in formal languages.

• Must be “elementary enough” to be easily 
checked wherever necessary. 



Back to the Example

The control-systemic way:

Assume the controller state is initialized at x
c,0 = 0

What range of values could be reached by the state x
c,k

and the control
variable u ?

x
c,k+1 =

[
0.499 −0.050
0.010 1.000

]
x
c,k

+

[
1
0

]
SAT(y

k
)

u
k = − [564.48 0]x

c,k
+ 1280 SAT(y

k
)

c,k
variable u

k
?

There is a variety of options, including computation of -1 norms. 

A Lyapunov-like proof (from Boyd et al., Poola):

The ellipsoid

is invariant. None of the entries of x exceeds 7 in size.

P =10−3

[
0.6742 0.0428
0.0428 2.4651

]
.

E
P =

{
x ∈ R2 | xTPx ≤ 1

}
.



Lyapunov functions and invariant 
ellipses

5 4 32

φdot

φ



A proof for control people

Indeed a linear combination of (*) and xTPx ≤ 1 and w2 ≤ 1 yields the

∀t, xTPx ≤ 1 is equivalent to xT
k
Px

k

≤ 1⇒ xT
k+1
Px

k+1

≤ 1

Or (Ax+Bw)TP (Ax+Bw) ≤ 1 whenever xTPx ≤ 1 and w2 ≤ 1

True if there exists µ such that (Ax+Bw))TP (Ax+Bw)−µxTPx−(1−µ)w2 <
0, (*) a tautology.

≤ ≤

desired property.

P that works is P =10−3

[
0.6742 0.0428
0.0428 2.4651

]
, with µ = 0.9991 and tautology

(*) is 10−3

[
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]
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−0.5044362 −0.0135878 0.3374606
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0.3374606 0.00909 −0.2258
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Quadratic
form

<0

Simulink, Discrete Time Formal Semantics
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{true}
1: A = [0.4990, -0.0500; 0.0100, 1.0000];

{true}
2: C = [-564.48, 0];

{true}
3: B = [1;0];D=1280

{true}
4: x = zeros(2,1);

{x ∈ EP }
5: while 1

{x ∈ EP }
6: y = fscanf(stdin,"%f")

{x ∈ EP }

{true}
1: A = [0.4990, -0.0500; 0.0100, 1.0000];

{true}
2: C = [-564.48, 0];

{true}
3: B = [1;0];D=1280

{true}
4: x = zeros(2,1);

{x ∈ EP }
5: while 1

{x ∈ EP }
6: y = fscanf(stdin,"%f")

{x ∈ EP }

Commented code

{ ∈ E }
7: y = max(min(y,1),-1);{
x ∈ EP , y

2 ≤ 1
}

8: u = C*x+D*y;

{x ∈ EP , u
2 ≤ 2(CP−1CT +D2), y2 ≤ 1}

9: fprintf(stdout,"%f\n",u)
{x ∈ EP , y

2 ≤ 1, (Ax+By)TP (Ax+By)− 0.01xTPx− 0.99y2 ≤ 0}
skip{
Ax+By ∈ EP , y

2 ≤ 1
}

10: x = A*x + B*y;

{x ∈ EP }
11: end

{ ∈ E }
7: y = max(min(y,1),-1);{
x ∈ EP , y

2 ≤ 1
}

8: u = C*x+D*y;

{x ∈ EP , u
2 ≤ 2(CP−1CT +D2), y2 ≤ 1}

9: fprintf(stdout,"%f\n",u)
{x ∈ EP , y

2 ≤ 1, (Ax+By)TP (Ax+By)− 0.01xTPx− 0.99y2 ≤ 0}
skip{
Ax+By ∈ EP , y

2 ≤ 1
}

10: x = A*x + B*y;

{x ∈ EP }
11: end



Adding the controlled plant as part of the 
controller’s semantics

+-

-0.010

1

Z
1

Z0.010
u y

++
++0.010

.00005

+
+-+-

-0.010-0.010

1

Z
1

Z
1

Z
1

Z0.010
u y

++++
++++0.0100.010

.00005

+

Quadratic
form

<1

+- ++

0.4990

0.0500

1280

564.48

-
+

SAT 1

Z
1

Z0.0100 ++
+-

y

yd

+-+-+- ++++++

0.4990

0.0500

1280

564.48

-
+

SAT 1

Z
1

Z
1

Z
1

Z0.0100 ++++++
+-+-+-

y

yd

x2 <0.5

P

(xc, xp)



Front End: Formal comment writing

• ANSI/ISO C Specification Language (ACSL) can 

Controller 
Specifications
+proof

Credible 
autocoder

Documented
(auto)-code

Proof 
checker

Go/no-go

(third party)

(user)

(certification
Authority)

• ANSI/ISO C Specification Language (ACSL) can 
be used to formally comment C programs and 
can be handled by Frama-C.

• Start from Simulink

• End with commented C code



ANNOTATION LANGUAGE
• On the Simulink Side

– Must be able to write system semantics and 
proofs supporting semantics.

• On the C side

– Same requirements of expressivity, but 
annotations must be readable by certification 
software.

– We express everything in ACSL.



A prototype front-end built on Gene-Auto
Thank you Marc Pantel, Arnaud Dieumegard, Andres Toom



Back End: Verification of Code Semantics

Controller 
Specifications

Credible 
autocoder

Documented
(auto)-code

Proof 
checker

Go/no-go

+proof
(auto)-code checker

(third party)

(user)

(certification
Authority)



FRAMA-C

• Developed by CEA-LIST and INRIA

• Hoare Style annotation language. 

• Can interface with manual and automated 
proving software (e.g., PVS).

• Has the required expressivity.



INTERFACING WITH VERIFICATION 
TOOLS

• We use Frama-C because it can generate 
verification conditions for various pieces of 
software

• The interface with PVS allows us to use • The interface with PVS allows us to use 
the work done at the National Institute of 
Aerospace (Heber Herencia) and SRI 
(Sam Owre) on verification of linear 
algebraic systems. (NFM 2012)



A physical example: 3 DOF 
helicopter



And it still works!!!



F-18 replica from Rockwell-Collins

http://www.youtube.com/watch?v=QJkIONTzbNM





















Engine closed-loop dynamics

• Past couple of years spent on engine 
controller design (control of n1, n2).

• STTR Collaboration with Aurora Flight 
Sciences.Sciences.

• Gain-scheduled controller design + 
Quadratic Lyapunov function as certificate 
enables initial documentation of control 
code.



Application to Collision avoidance
TCAS / last resort safety net



Vehicle guidance and collision 
avoidance

• Current TCAS designed as computer 
pseudo-code and specifications

Very hard to formally prove
anything about TCAS.

Where are the invariants? 
Good luck with that. A nice 
challenge for static analyzers.



ACAS-X: A new development

• An airborne, embedded collision 
avoidance system like TCAS. Same 
functionality.

• Developed by Lincoln Laboratory, • Developed by Lincoln Laboratory, 
Lexington, Massachusetts, and MIT.

• Reportedly improvement over TCAS.

• Development encouraged by Federal 
Aviation Administration, and discussed by 
FAA/EASA/DGAC-DTI groups.



New Development: ACAS-X

• Designed according to sound theoretical, 
model-based principle of Dynamic 
Programming:

J∗(x) = minu (c(x) + J
∗(x+))

x+ f (x, u)x+ = f (x, u)

Think of J as total probability of collision during

encounter, c(x) as probability of collision at state x

during small instant. Need other terms to prevent

aircraft from making, e.g. Split S maneuver.



ACAS-X certification
From Kochenderfer, 2010

“In particular, since this is a new approach to TCAS logic development, 
the  certifiability of the resulting logic is of particular concern. If this new 
approach is to be used simply as an aid to engineers who are 
developing or revising collision avoidance pseudocode, then there 
would be little impact on the certification process. However, if the logic 
produced by dynamic programming or some other automated process 
is to be used directly in a future version of TCAS, then the certification is to be used directly in a future version of TCAS, then the certification 
process may be somewhat different. The core of the certification 
process will be the same, involving rigorous simulation studies and 
flight tests to prove safety and demonstrate operational acceptability. 
However, the vetting of the logic itself will involve more than just 
studying the logic that will be deployed on the system. Depending on 
the representation of the logic, it may not be directly comprehensible by 
an engineer. Therefore, confidence would need to be established in the 
safety community that the methods used to generate the logic are 
sound.”



Solution in part via close 
designer/software analysis 

cooperation

• Under “optimal” decision policy,        , the 
optimal cost, decays along trajectories.

J∗

J∗

• ie         acts a bit like a…. Lyapunov function.

• So plenty of opportunities to extract essential 
ACAS-X software properties at design phase.

J∗



Lyapunov functions yield software 
invariants…

5 4 32
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… So does dynamic programming
v

x

Time-Optimal Control: 
Double integrator

x =
sign(v)v2

2

(graphics are more than approximate)

T ∗ = −v + 2

√
v2

2
− x

=
2



Minimum time 
path planning 
with obstacles:
Discontinuous
value 
functions?functions?



So do optimal cost functions…
(Note: This is NOT ACAS-X)

4
5

6

4 3 2 1
0

-4 -6



Same challenges as for inner-loop 
control functions

•Lincoln Lab’s ACAS-X is designed via discretized state-space.
•Specification-level models used to design system are not 
identical to reality



Optimization algorithmsf(x)

%x1,x2 given

while true

(x,y)=int(subdiff(x1,x2))

if f’(x)> 0 then x2=x;

else x1=x

end

Invariant properties to 
insert in code:

xx1 x2x3
x4

x5

y3

y4

y5

Decay of f(x)’s
Increase of y’s
f(x)>y



The whole aircraft system

• The controls

• Fault detection isolation

• The human & displays

• The vehicle itself• The vehicle itself



Conclusion

• It is possible to generate safety-critical 
control code from specifications, all-
equipped with semantics and proofs.

• Code-level analyses are possible, and 
much easier than analyses from code 
alone.
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