
11/17/2014

1

CPS Architectures and
Methodologies

Marilyn Wolf

Georgia Tech

11/17/2014 © 2014 Elsevier, Marilyn Wolf 1

Outline

• Examples from automotive and aircraft systems.

• Observations on architecture.

• Design methodologies.

11/17/2014 © 2014 Elsevier, Marilyn Wolf 2

11/17/2014

2

Examples
Automotive.

Aerospace.

11/17/2014 © 2014 Elsevier, Marilyn Wolf 3

© 2014 Elsevier, Marilyn Wolf

Automotive and aviation electronics

• Some functions are safety-critical.

• Must operate in real-time.

• Must fit within power budget (limited by generator).

• Must be lightweight to fit within vehicle weight budget.

11/17/2014 4

11/17/2014

3

© 2014 Elsevier, Marilyn Wolf

Automotive electronics/avionics uses

• Operator vs. passenger: Passenger operations are less critical, more
varied (TV, Internet, etc.).

• Control vs. instrumentation: Instruments report on the vehicle,
control closes the loop.
• Low-priority operations should not interfere with high-priority operations in

the system: flight surfaces vs. instruments; instruments vs. passenger devices.

11/17/2014 5

© 2014 Elsevier, Marilyn Wolf

Automobiles as distributed embedded systems

11/17/2014 6

© IEEE Computer Society

11/17/2014

4

Architectural principles
System requirements

Networks and distributed control.

Cyber-side design issues.

11/17/2014 © 2014 Elsevier, Marilyn Wolf 7

© 2014 Elsevier, Marilyn Wolf

Design goals

• Traditional software view of requirements:
• Functional requirements: input/output relations.

• Non-functional requirements: cost, performance, power, etc.

• Software view of requirements is not well-suited to control system
requirements.

• Reliability and safety are first-tier requirements.

• Some project goals may be difficult to measure.

11/17/2014 8

11/17/2014

5

Design parameters

• Delay.
• Latency.

• Jitter.

• Bandwidth.

• Guarantees.

• Energy consumption.
• Limited power available from generator.

• Heat dissipation.

• Security.

11/17/2014 © 2014 Elsevier, Marilyn Wolf 9

© 2014 Elsevier, Marilyn Wolf

Aspects of performance

• Embedded system performance can be measured in many ways:
• Average vs. worst/best-case.

• Throughput vs. latency.

• Peak vs. sustained.

• Digital control systems are sampled.
• Sample period determines deadline, latency.

11/17/2014 10

11/17/2014

6

© 2014 Elsevier, Marilyn Wolf

Energy/power

• Energy consumption is important for battery life.

• Power consumption is important for heat generation or for generator-
powered systems (vehicles).

11/17/2014 11

© 2014 Elsevier, Marilyn Wolf

Cost

• Design cost must be paid off across all the systems.
• Hardest in small-volume applications.

• Manufacturing cost is incurred for each device.

• Lifetime costs include software and hardware maintenance and
upgrades.

11/17/2014 12

11/17/2014

7

© 2014 Elsevier, Marilyn Wolf

Other design attributes

• Design time must be reasonable. May need to finish by a certain date.

• System must be reliability; reliability requirements differ widely.

• Quality includes reliability and other aspects: usability, durability, etc.

• Systems that must be certified must use certifiable, documented
design processes.

11/17/2014 13

Why distributed
control?
• Reduce closed loop delay by putting

computation near physics.

• Improved cost/performance by reducing
scheduling overhead.

• Rate-monotonic scheduling requires
unused cycles.

• CPU cost is non-linear in performance.

• Control architecture drives cyber
architecture?

CPU
cost

CPU performance

PE 1 PE 2 actuator

11/17/2014 © 2014 Elsevier, Marilyn Wolf 14

11/17/2014

8

Cyber-oriented architectural aspects

• Network hardware architecture:
• Bandwidth.

• Scheduling.

• Hardware-dependent software (HDS), OS, and middleware:
• Scheduling.

• Latency.

• Contention and performance effects.

• Application-level tasks:
• Multi-criticality.

• Security.

11/17/2014 © 2014 Elsevier, Marilyn Wolf 15

Bus-based control
system
• Bus must provide real-time services.

• Typically provided by TDMA, time-
triggered architecture, etc.

• Generally based on message passing, not
shared memory.

• Some bus standards provide redundancy
and fault recovery methods.

PE 1 PE n

PE i

11/17/2014 © 2014 Elsevier, Marilyn Wolf 16

11/17/2014

9

CPS internetworking

• Cars and airplanes are internetworked---a network of heterogeneous
networks.
• Different networks for different cost/performance/guarantees points.

• Automotive networks:
• Flex-ray for safety-critical, timing-critical functions.

• CAN for less critical functions.

• LIN for doors and other low-cost, low-bandwidth functions.

• MOST for passenger entertainment.

• Internetworking support appears to be ad hoc and bridge-based.

11/17/2014 © 2014 Elsevier, Marilyn Wolf 17

The multi-criticality paradigm

• Complex systems are built from many tasks, some of which are more
important than others (aviate, navigate, communicate):
• Flight control.

• Navigation.

• Communication.

• Sensors.

• Mission planning.

• Must meet deadlines for all high-criticality tasks.

• Schedule lower-criticality tasks based on priorities and available
resources.

11/17/2014 © 2014 Elsevier, Marilyn Wolf 18

11/17/2014

10

Methodologies
Embedded system design methodologies.

Methodologies and standards.

Electronic system level (ESL) design methodologies.

System-on-chip vs. CPS.

CPS methodologies.

11/17/2014 © 2014 Elsevier, Marilyn Wolf 19

© 2014 Elsevier, Marilyn Wolf

Design methodology

• Design methodology: a procedure for creating an implementation
from a set of requirements.

• Methodology is important in embedded computing:
• Must design many different systems.

• We may use same/similar components in many different designs.

• Design time, results must be predictable.

11/17/2014 20

11/17/2014

11

© 2014 Elsevier, Marilyn Wolf

Embedded system design challenges

• Design space is large and irregular.

• We don’t have synthesis tools for many steps.

• Can’t simulate everything.

• May need to build special-purpose simulators quickly.

• Often need to start software development before hardware is
finished.

11/17/2014 21

© 2014 Elsevier, Marilyn Wolf

Design complexity vs. designer productivity

11/17/2014 22

11/17/2014

12

© 2014 Elsevier, Marilyn Wolf

Basic design methodologies

• Figure out flow of decision-making.

• Determine when bottom-up information is generated.

• Determine when top-down decisions are made.

11/17/2014 23

© 2014 Elsevier, Marilyn Wolf

Waterfall and spiral models

11/17/2014 24

11/17/2014

13

© 2014 Elsevier, Marilyn Wolf

Hardware/software co-design flow

11/17/2014 25

© 2014 Elsevier, Marilyn Wolf

Platform-based design

• Platform includes hardware,
supporting software.

• Two stage process:
• Design the platform.

• Use the platform.

• Platform can be reused to host
many different systems.

11/17/2014 26

11/17/2014

14

© 2014 Elsevier, Marilyn Wolf

Platform design

• Turn system requirements and software models into detailed
requirements.
• Use profiling and analysis tools to measure existing executable specifications.

• Explore the design space manually or automatically.

• Optimize the system architecture based on the results of simulation
and other steps.

• Develop hardware abstraction layers and other software.

11/17/2014 27

© 2014 Elsevier, Marilyn Wolf

Programming platforms

• Programming environment must be customized to the platform:
• Multiple CPUs.

• Specialized memory.

• Specialized I/O devices.

• Libraries are often used to glue together processors on platforms.

• Debugging environments are a particular challenge.

11/17/2014 28

11/17/2014

15

© 2014 Elsevier, Marilyn Wolf

Standards-based design methodologies

• Standards enable large markets.

• Standards generally allow products to be differentiated.
• Different implementations of operations, so long as I/O behavior is

maintained.

• User interface is often not standardized.

• Standard may dictate certain non-functional requirements (power
consumption), implementation techniques.

11/17/2014 29

© 2014 Elsevier, Marilyn Wolf

Reference implementations

• Executable program that complies with the I/O behavior of the standard.
• May be written in a variety of language.

• In some cases, the reference implementation is the most complete
description of the standard.

• Reference implementation is often not well-suited to embedded system
implementation:
• Single process.

• Infinite memory.

• Non-real-time behavior.

11/17/2014 30

11/17/2014

16

© 2014 Elsevier, Marilyn Wolf

Designing standards-based systems

• Design and implement system components that are not part of the
standard.

• Perform platform-independent optimizations.

• Analyze optimized version of reference implementation.

• Design hardware platform.

• Optimize system software based on platform.

• Further optimize platform.

• Test for conformity to standard.

11/17/2014 31

Design verification and validation

• Showing that the design is correct and fixing bugs often takes more
time than initial design.

• Design correctness activities:
• Testing exercises an implementation with stimuli and observed outputs.

• Validation compares implementation to requirements or spec.

• Verification compares the design at one level of abstraction to another.

© 2014 Elsevier, Marilyn Wolf11/17/2014 32

11/17/2014

17

V&V techniques

• Simulation uses software/hardware models to compute outputs from
inputs.
• Simulator-in-the-loop integrates a simulator of a physical plant with cyber

controllers.

• Formal methods perform proofs: equivalence, properties, etc.

• Manual methods such as code reviews, walkthroughs, and
inspections have been shown to catch many bugs.

© 2014 Elsevier, Marilyn Wolf11/17/2014 33

© 2014 Elsevier, Marilyn Wolf

A methodology of methodologies

• Embedded systems include both hardware and software.
• HW, SW have their own design methodologies.

• Embedded system methodologies control the overall process, HW/SW
integration, etc.
• Must take into account the good and bad points of hardware and software

design methodologies used.

11/17/2014 34

11/17/2014

18

© 2014 Elsevier, Marilyn Wolf

Joint algorithm and architecture development

• Some algorithm design is necessarily performed before platform
design.

• Algorithm development can be informed by platform architecture
design.
• Performance/power/cost trade-offs.

• Design trends over several generations.

11/17/2014 35

Electronic system-level design

• ESL for mixed hardware/software
systems.

• Often driven from SystemC or
Matlab.

• Concentrates on refinement of
abstract system to HW, SW
components.

© 2014 Elsevier, Marilyn Wolf11/17/2014 36

11/17/2014

19

ESL tools

• Daedalus for multimedia MPSoCs:
• Application modeled as Kahn process.

• Design space exploration based on high-level models of major HW
components.

• SCE uses three-level design hierarchy:
• Specification is set of behaviors and abstract communication channels.

• Transaction-level model maps onto platform architecture.

• Implementation model is cycle-accurate.

© 2014 Elsevier, Marilyn Wolf11/17/2014 37

X-chart

• X-chart extends Gajski-Kuhn Y-
chart:
• Input to synthesis is behavior and

constraints.

• Synthesis produces structure and
quality metrics.

© 2014 Elsevier, Marilyn Wolf11/17/2014 38

11/17/2014

20

CPS and SoC: Differences

• Locked vs. evolving design:
• SoC is locked at tapeout.
• Many networked CPS are long-lived and evolve.

• Mission criticality:
• Reliability a recent trend in SoC.
• Many advanced CPS that motivate research are mission or safety critical.

• Self-containment:
• Many CPS designs are constrained by their physical plant.

• Specs:
• SoC specs are lower level (SystemC).
• CPS specs are higher level (ADSL, step response, etc.).

11/17/2014 © 2014 Elsevier, Marilyn Wolf 39

CPS and SoC: Similarities

• Real-time.

• Software intensive.

• Complex functional specs, demanding non-functional specs.

• Networking:
• SoCs have internal heterogeneous networks, often synthesized.

• CPS use heterogeneous networks, many COTS.

11/17/2014 © 2014 Elsevier, Marilyn Wolf 40

11/17/2014

21

SoC techniques and CPS

• Specification languages.

• Modeling:
• Transaction-level modeling.

• Power and thermal models.

• Network models.

• Platform-based design.

11/17/2014 © 2014 Elsevier, Marilyn Wolf 41

CPS arch and model-based design

• Model-based design is primarily top-down.

• SoC world has a lot of experience with bottom-up design.

• Adapting the requirements effectively requires bottom-up design
information.

11/17/2014 © 2014 Elsevier, Marilyn Wolf 42

11/17/2014

22

CPS design methodologies

• CPS requires deep design
hierarchies, complex verification
methodology.

• V-chart: design by top-down
refinement, verify bottom-up

© 2014 Elsevier, Marilyn Wolf11/17/2014 43

Karsai et al. Model-Integrated Computing
• Methodology and toolset for

model-based design.

• Domain-specific modeling language
(DSML) or meta-language allows
deisgner to work directly in
application domain.

• Composition:

• Abstraction and hierarchy.

• Modularization.

• Interfaces and connecdtion.

• Aspect-oriented programming.

• Non-local interactions.

© 2014 Elsevier, Marilyn Wolf

[Kar03] © 2003 IEEE

11/17/2014 44

11/17/2014

23

Model-based design in specific domains

• Tariq et al. DSML for irrigation networks using GME.
• Components include channels, pools, gates, meters, physical links and

communication.

• Saint Venant’s equation describes movement of water in the irrigation
network.

• AADL is an SAE standard language for model-based engineering
motivated by aerospace.
• Threads, processes, data for software.

• Processors, memories, and comm for hardware.

© 2014 Elsevier, Marilyn Wolf11/17/2014 45

