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CYBER PHYSICAL SYSTEMS

Critical Embedded systems are everywhere: from the small
embedded devices such as insulin pump or small UAV to huge jet
airliners or latest electric or hybrid cars such as the GM Volt.

Ambition

sustain the development of CPS by achieving comparable safe-
ty/security with simpler/cheaper development processes



TODAY’S TARGET: CONTROL SYSTEMS FOR A UAV
TYPICAL DEVELOPMENT CYCLE OF A CONTROLLER FOR AN AIRCRAFT

Differential Equations (plant)

Continuous controller
Discrete version

Safety architecture
redundancy, validators,
COM/MON...

Test
Simulation

Code

Binary

Unit Test

Integration Test

Validation Test
Control theorists

Computer scientists
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SYSTEM EXAMPLE: BASIC TRIPLICATION PATTERN

u
Controller

in0_d in1_d
Triplex

in0

Triplex
in1

System

in0

in1

Satin0a

Satin0b

Satin0c

Satin1a

Satin1b

Satin1c



REGULATION : CERTIFICATION AUTHORITIES

Each industry has its own certification process and associated
authorities

Different rules for different domains :
∗ civil aircrafts
∗ railway
∗ space
∗ automotive

Regulation are usually international, or at least European for
France.
National authorities have the duty to receive your files and
validate your plane/car/train with respect to regulation
∗ in France, for civil aircrafts, this is the role of the DGATA, en entity of

the french defense department

Not quite clear yet for UAVs



GUARANTYING SOFTWARE: A PROCESS BASED APPROACH

Va
lid

at
io

n

Specification

Model

Code

Binary

Validation
tests

Integration
tests

Unit tests

Relative cost of systems in an aircraft: 30% for civil planes, 50% for
military
Relative cost of validation for systems: « [..] costly testing and
validation phases that can take up to 80% of the cost of designs. »
[IST Report]



WHAT IS TESTING ?

Specification

Implementation Test cases

Binary
(or Device)

Output

Oracle:
Is this OK?

Manual parts are the costly ones.
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CIVIL AIRCRAFTS: THE DO 178 B & C

Old certification document: first version in the 80s, B version in 92,
now switching to C.
Not so big: 140 pages for B version

3 main words: traceability, conformance, verification
∗ traceability with respect to upper level requirements

I each item at any place should be linked to its original requirement, no
dead code, you need to master everything

∗ conformance to standards at a given level
∗ verification w.r.t higher level specification

The norm:
the norm define goals and not means.
you could do what you want.
formal methods can be applied.
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Old certification document: first version in the 80s, B version in 92,
now switching to C.
Not so big: 140 pages for B version

3 main words: traceability, conformance, verification
∗ traceability with respect to upper level requirements

I each item at any place should be linked to its original requirement, no
dead code, you need to master everything

∗ conformance to standards at a given level
∗ verification w.r.t higher level specification

The norm:
the norm define goals and not means, but ... test oriented.
you could do what you want but ... the test results should be.
formal methods can be applied but ... tests should be.





DO TESTING PROCESS AND CRITICALITY LEVELS

DO testing process

Tests should be only requirement-based
∗ hence: no test generation based on code is allowed
∗ normal range tests, robustness tests, based on specification
∗ 3 kinds: integration HW/SW, integration SW, low level tests

When to stop testing: structural coverage criteria

DO criticality levels

four levels from most critical (A) to less (D)
in practice each level is associated with a coverage criteria:
for A level, MC/DC modified condition/decision coverage
exhaustive coverage of the atomic conditions of the boolean
formula



DO TESTING PROCESS CONT’D



CERTIFYING A SYSTEM UNDER DO178B
The practice:

the aircraft manufacturer argues with a certification authority
production of heavy certification document
specific authorization for specific industrial projects

=⇒ it is possible to do something else than just tests such as formal
methods

Classical approach to Verification and Validation (V&V): Test!

simulation at model level (among other issues: work on a
simplification of the plant description, an ideal representation)
informal specification (natural language) of each component
(HLR / LLR)
manual coding
Unit Tests / Integration tests for software
Hardware in the loop tests, validation tests, flight tests . . . once
integrated with the OS, the platform, the aircraft



CRITICAL SOFTWARE

Target systems:
Control command, flight control, safety tests, engines . . .

Most critical : level A

Reactive systems : software that computes a loop body forever
reads the control input, the environment input, produces a
feedback
complex logic of alarm handling and reporting
necessity to guaranty time constraint: execution time bounds

Important issue: we never look for bug, we rather ensure their
absence !



CRITICAL SOFTWARE: WHAT TO VERIFY ?

Due to certification issues, programs should be mastered: reasonable
subset of C, no malloc, no recursion, but floats. =⇒ C0 like code

Conformance (general properties):
Reactive systems: real time issues (Worst Case Execution Time)
Run Time Errors: overflow, pointer dereferencing, out-of-bound
access, illegal arithmetic ops, . . .
Floating points vs Reals

Verification (specific properties):
Low level specification

Rely as much as possible on autocoders to generate code from
models.



EXAMPLE: AIRBUS DEVELOPMENT CYCLE
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PROGRAM SEMANTICS
SEMANTICS ≡ BEHAVIOR OF THE PROGRAM

Differents means to describe it
Operational semantics
∗ system described as transitions from one step to the other

c1 →α c2 →β c3 →β c4 →γ . . . cn−1 →α cn

Denotational semantics
∗ interested in the result, not the intermediate states

JeK = meaning of e ie. its value

Axiomatic semantics less precise
∗ does not define the output as a function over the input
∗ does not describe the computation steps

but - specify the expected behavior - is independent on the
implementation



TRACE SEMANTICS VS COLLECTING SEMANTICS

Properties of the systems are expressed/observed/verified over
executions.
Consider a transition system S defined as (Σ, I,R)

Σ: set of states
I ⊆ Σ: initial states
R ∈ Σ× Σ: computation steps

Trace semantics
TS(S) , {s0s1 . . . |s0 ∈ I,∀i ≥ 0, (si, si+1) ∈ R}

Properties: temporal logics

Collecting semantics

CS(S) , {sn|∃n ≥ 0∃(s) ∈ TS(S)}

Properties: safety



FORMAL METHODS

Why using formal methods ?

Strong mathematical evidence: exhaustive analysis
Could be automatized for some kind of programs
Reusability (software evolution)
Cost killer (less time to verify, less people needed)
More interesting for humans :)

Safety properties

FM provide means to verify that a program verifies a property
Here, safety properties: observable on the collecting semantics.
Ie. true for all reachable state independently of their past.



BAD NEWS: UNDECIDABILITY

Assuming a method allows to verify a property on a program. It
should be

sound complete terminating

Infortunately, as reported by Rice’s undecidability theorem, no such
method exists in general for non trivial properties.
Choice: loose the completeness property
When it fails: find alternatives, tests, manual reviews, etc.

Different approaches to reason on programs
SMT based model-checking
Abstract Interpretation
Deductive methods



BAD NEWS: UNDECIDABILITY

Assuming a method allows to verify a property on a program. It
should be

sound complete terminating

Infortunately, as reported by Rice’s undecidability theorem, no such
method exists in general for non trivial properties.
Choice: loose the completeness property
When it fails: find alternatives, tests, manual reviews, etc.

Different approaches to reason on programs
SMT based model-checking
Abstract Interpretation
Deductive methods



BAD NEWS: UNDECIDABILITY

Assuming a method allows to verify a property on a program. It
should be

sound complete terminating

Infortunately, as reported by Rice’s undecidability theorem, no such
method exists in general for non trivial properties.
Choice: loose the completeness property
When it fails: find alternatives, tests, manual reviews, etc.

Different approaches to reason on programs
SMT based model-checking
Abstract Interpretation
Deductive methods



CONTENTS

Motivation

Formal methods
SMT-based model-checking
Abstract Interpretation - reasoning on set of states as abstract states
Deductive method

Dealing with Floating points computation

Example of use

Current trends – Challenges



SMT-BASED MODEL-CHECKING

Encode the model semantics as a predicate in SMT logics: M(x,y)
∗ ie. in a tooled decidable subset of first order logic.

Perform inductive reasoning for a given property:
∗ eg: true |= P(init) and P(x) ∧M(x, y) |= P(y)

Compute backward analysis using quantifier elimination
∗ prove the non reachability of a set describing bad state

Example of algorithms: k-induction, PDR/IC3
pros:

capable of producing a concrete counter example (bounded model
checking)
Useful to debug or understand the origin of the property violation

cons:
are restricted to linear inductive or k-inductive properties;
bad results in presence of complex numerical computations
depend on the power of SMT solvers
some properties may be hard to analyze
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MODEL-CHECKING: A SIMPLE LUSTRE EXAMPLE

node accu(i: int) returns (o: int);
let

o = 0 -> i + pre o;
tel;
–@ ensures out ≥ 0;
node f(reset: bool) returns (out: int);
var cpt: int; ok : bool;
let

cpt = if reset then 0 else (0 -> 1 + pre cpt);
out = if reset then 0 else accu(cpt);

tel;

Not k-inductive (for any k): if cpt < 0 then out could be negative
Reinforcing the property: out ≥ 0 ∧ cpt ≥ 0 is 1-inductive
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ABSTRACT INTERPRETATION - REASONING ON SET OF STATES
AS ABSTRACT STATES

Prog |= Prop ≡ CollectingS(Prog) ⊆ Prop
x is even where x ∈ {2, 4, 6} ≡ {2, 4, 6} ⊆ {...,−4,−2, 0, 2, 4, . . .}

Idea: compute an overapproximation x# ⊇ x:
x# = {2, 4, 6, 8} ⊆ Even OK, 8 denoting a spurious value
x# = {2, 4, 5, 6} 6⊆ Even we are not able to conclude

Algorithm: Kleene fixpoint computation on the monotonic abstract
semantics of the program

Example of abstractions
intervals
Convex close polyhedra
Zonotopes (vector of affine forms)
Ellipsoids (level set of quadratic polynomials)



ABSTRACT INTERPRETATION - APPLICATION

Recast the semantics as fixpoint

CS = lfp
(
λX.I ∪ {s′|s ∈ X, (s, s′) ∈ R}

)
Choose an appropriate abstraction depending on the property to
be proved (boundedness, relationship between variables, memory
issues, etc)
Express the model semantics in the abstract domain
Compute an over approximation of reachable states in the abstract
domain
∗ operators are used to

widening force termination through additional abstraction, ie. imprecision
narrowing regain part of the lost precision

Stable linear controllers with or without saturations are analyzed
using a specific abstract domain:

The control flow graph of the controller is identified
The stability of each linear subsystem is analyzed and provides a
quadratic Lyapunov function (ellipsoid)
The set of reachable states is bounded using the generated
ellipsoids.
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DEDUCTIVE METHOD

Mainly developped for reasoning about imperative code (rather
than Synchronous Languages)
Notion of contract: Precondition, Postcondition
Hoare triple {Pre}code{Post}
Symbolic algorithm, by induction of the program instruction
=⇒ compute the weakest precondition that, when satisfied,

guaranty to obtain Post after executing Code: WP(Code,Post).
Proving the contract ≡ prove Pre =⇒ WP(Code, Post)$

Tools axiomatize (ie. encode in SMT predicates) all the semantics of
the considered language, eg. C:

memory model (overflow in array index may reach other values)
may use various backend solver to discharge proof objectives
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DEDUCTIVE METHOD - EXAMPLE OF HOARE ANNOTATIONS

{ n ≥ 0 }
x := 1;
{ x=1 ∧ n ≥ 0 }
y := n;
{ x=1 ∧ n ≥ 0 ∧ y = n }
{ x × y! = n! ∧ y ≥ 0 }
while y 6= 0 do

{ x × y! = n! ∧ y ≥ 0 ∧ y 6= 0 }
{ x × y! = n! ∧ (y − 1) ≥ 0 }
x := x × y;
{ x × (y− 1)! = n! ∧ (y− 1) ≥ 0 }
y := y - 1

{ x × y! = n! ∧ y ≥ 0 }
done;
{ x × y! = n! ∧ y ≥ 0 ∧ y = 0 }
{ x = n! }
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DEDUCTIVE METHOD - WP EXAMPLE

{ n ≥ 0 }
x := 1;
y := n;
while y 6= 0 do

// Invariant I , x × y! = n! ∧ y ≥ 0
x := x × y;
y := y - 1

done;
{ x = n! }

WP(loop_body, { x = n! }) = Inv
WP(fact, { x = n! }) = WP(assign, Inv) = 1 × n! = n! ∧ n ≥ 0 = n ≥ 0

Proof Objective: n ≥ 0 =⇒ WP(fact, { x = n! })



DEDUCTIVE METHOD - STABILITY ANALYIS

System open-loop stable: existence of a Lyapunov function (LF)
Quadratic LF supplied by the user
Automatic generation of quadratic invariants annotations in the
code
Use of specific solver to discharge the generated proof obligations

//@ in_ellipsoidQ(QMat_11,vect_of_1_scalar(Sum4));
{
Sum4 = discrete_timeg_no_plant_08b_y -
discrete_timeg_no_plant_08b_yd;
}
//@ ensures in_ellipsoidQ(QMat_12,vect_of_2_scalar(Sum4,D11));
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DEALING WITH FLOATING POINTS COMPUTATION

Floats are not reals!!

i n t i = 0 ; f l o a t x = 0;
while ( i < 1000000) {

x += 0 . 1 ;
++ i ;

}
p r i n t f ( "%f \ n " , x ) ;

returns 100958.343750 on my computer.

Float operations are non associative, non distributive, etc.
All presented methods have to be adapted to consider floating point
computation:

dedicated SMT solvers
adapt the proofs to handle floating point errors
∗ eg. to prove that ∀x; x ≤ v prove instead that

I x ≤ v′

I v′ + flerr(x) < v with flerr(x) the floating point error generated when
computing x

Similar issues at the tool level: they use floats as well!
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APPLICATION OF FORMAL METHOD ON A SIMPLE CONTROL
SYSTEMS

In practice formal V& V can be performed at various stages of the
development process

early at model level on simpler version of the program
at code level with the added difficulties caused by pointers, heap,
stack, RTE.
it requires the formalization of the specification.

Va
lid

at
io

n

Specification

Model

Code

Binary



AT MODEL LEVEL - COMBINING ANALYSES
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AT MODEL LEVEL - BASIC SATURATIONS
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Abstract Interpretation computes a sound bound (1.2) on each ouptut
whatever the value of inxy is.



AT MODEL LEVEL - ANALYSIS OF THE TRIPLEX VOTER
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Backward analysis applied on each triplex proves the specification
BIBO.

∀k ∈ N, |InAk| ≤ a ∧ |InBk| ≤ a ∧ |InCk| ≤ a =⇒ |Outputk| ≤ 3a ∧
|EqualizationAk| ≤ 2a ∧ |EqualizationBk| ≤ 2a ∧ |EqualizationCk| ≤ 2a

Assuming input is bounded by 1.2, we have output bounded by 3.6.
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CURRENT TRENDS – CHALLENGES

Combining methods:
∗ Deductive methods and model checking often require additional

invariants
∗ use astract interpretation or other techniques to compute invariants

Extend the analyses to hybrid systems
∗ extend the set of properties considered
∗ guaranting exhaustively that properties hold on a mix of discrete and

continuous systems
Integrate formal methods in the development process:
∗ propagate down specification and proofs
∗ propagate back counter examples and invariants for

annotation/traceability purposes.
∗ in an automatic fashion



CONCLUSION

Critical CPS and softwares are everywhere
They play a major role in transportation system (and elsewhere)
Certification norms are restrictive but they simplify the use of
formal methods
Formal methods exist since the 70s but they reached a level of
maturity that permits their use in the real world now
They could play a major role in the development of UAVs

Challenging issues on transfers from research to industry
∗ interact with industry, understand their process, make them evolve.

Challenging issues on the research side to handle new properties
∗ have new techniques that scale up, automatic proofs, . . .


	Motivation
	Formal methods
	SMT-based model-checking
	Abstract Interpretation - reasoning on set of states as abstract states
	Deductive method

	Dealing with Floating points computation
	Example of use
	Current trends -- Challenges

